Calculation of Interest

Calculating interest rate is not at all a difficult method to understand. Knowing to calculate interest rate can solve a lot of wages problems and save money while taking investment decisions. There is an easy formula to calculate simple interest rates. If you are aware of your loan and interest amount you can pay, you can do the largest interest rate calculation for yourself.

Using the simple interest calculation formula, you can also see your interest payments in a year and calculate your annual percentage rate.

Here is the step by step guide to calculate the interest rate.

How to calculate interest rate?

Know the formula which can help you to calculate your interest rate.

Step 1

To calculate your interest rate, you need to know the interest formula I/Pt = r to get your rate. Here,

I = Interest amount paid in a specific time period (month, year etc.)

P = Principle amount (the money before interest)

t = Time period involved

r = Interest rate in decimal

You should remember this equation to calculate your basic interest rate.

Step 2

Once you put all the values required to calculate your interest rate, you will get your interest rate in decimal. Now, you need to convert the interest rate you got by multiplying it by 100. For example, a decimal like .11 will not help much while figuring out your interest rate. So, if you want to find your interest rate for .11, you have to multiply .11 with 100 (.11 x 100).

For this case, your interest rate will be (.11 x 100 = 11) 11%.

Step 3

Apart from this, you can also calculate your time period involved, principal amount and interest amount paid in a specific time period if you have other inputs available with you.

Calculate interest amount paid in a specific time period, I = Prt.

Calculate the principal amount, P = I/rt.

Calculate time period involved t = I/Pr.

Step 4

Most importantly, you have to make sure that your time period and interest rate are following the same parameter.

For example, on a loan, you want to find your monthly interest rate after one year. In this case, if you put t = 1, you will get the final interest rate as the interest rate per year. Whereas, if you want the monthly interest rate, you have to put the correct amount of time elapsed. Here, you can consider the time period like 12 months.

Please remember, your time period should be the same time amount as the interest paid. For example, if you’re calculating a year’s monthly interest payments then, it can be considered you’ve made 12 payments.

Also, you have to make sure that you check the time period (weekly, monthly, yearly etc.) when your interest is calculated with your bank.

Step 5

You can rely on online calculators to get interest rates for complex loans, such as mortgages. You should also know the interest rate of your loan when you sign up for it.

For fluctuating rates, sometimes it becomes difficult to determine what a certain rate means. So, it is better to use free online calculators by searching “variable APR interest calculator”, “mortgage interest calculator” etc.

Calculation of interest when rate of interest and cash price is given

  • Where Cash Price, Interest Rate and Instalment are Given:

Illustration:

On 1st January 2003, A bought a television from a seller under Hire Purchase System, the cash price of which being Rs 10.450 as per the following terms:

(a) Rs 3,000 to be paid on signing the agreement.

(b) Balance to be paid in three equal installments of Rs 3,000 at the end of each year,

(c) The rate of interest charged by the seller is 10% per annum.

You are required to calculate the interest paid by the buyer to the seller each year.

Solution:

Note:

  1. there is no time gap between the signing of the agreement and the cash down payment of Rs 3,000 (1.1.2003). Hence no interest is calculated. The entire amount goes to reduce the cash price.
  2. The interest in the last installment is taken at the differential figure of Rs 285.50 (3,000 – 2,714.50).

(2) Where Cash Price and Installments are Given but Rate of Interest is Omitted:

Where the rate of interest is not given and only the cash price and the total payments under hire purchase installments are given, then the total interest paid is the difference between the cash price of the asset and the total amount paid as per the agreement. This interest amount is apportioned in the ratio of amount outstanding at the end of each period.

Illustration:

Mr. A bought a machine under hire purchase agreement, the cash price of the machine being Rs 18,000. As per the terms, the buyer has to pay Rs 4,000 on signing the agreement and the balance in four installments of Rs 4,000 each, payable at the end of each year. Calculate the interest chargeable at the end of each year.

(3) Where installments and Rate of Interest are Given but Cash Value of the Asset is Omitted:

In certain problems, the cash price is not given. It is necessary that we must first find out the cash price and interest included in the installments. The asset account is to be debited with the actual price of the asset. Under such situations, i.e. in the absence of cash price, the interest is calculated from the last year.

It may be noted that the amount of interest goes on increasing from 3rd year to 2nd year, 2nd year to 1st year. Since the interest is included in the installments and by knowing the rate of interest, we can find out the cash price.

Thus:

Let the cash price outstanding be: Rs 100

Interest @ 10% on Rs 100 for a year: Rs 10

Installment paid at the end of the year 110

The interest on installment price = 10/110 or 1/11 as a ratio.

Illustration:

I buy a television on Hire Purchase System.

The terms of payment are as follows:

Rs 2,000 to be paid on signing the agreement;

Rs 2,800 at the end of the first year;

Rs 2,600 at the end of the second year;

Rs 2,400 at the end of the third year;

Rs 2,200 at the end of the fourth year.

If interest is charged at the rate of 10% p.a., what was the cash value of the television?

Solution:

(4) Calculation of Cash Price when Reference to Annuity Table, the Rate of Interest and Installments are Given:

Sometimes in the problem a reference to annuity table wherein present value of the annuity for a number of years at a certain rate of interest is given. In such cases the cash price is calculated by multiplying the amount of installment and adding the product to the initial payment.

Illustration:

A agrees to purchase a machine from a seller under Hire Purchase System by annual installment of Rs 10,000 over a period of 5 years. The seller charges interest at 4% p.a. on yearly balance.

N.B. The present value of Re 1 p.a. for five years at 4% is Rs 4.4518. Find out the cash price of the machine.

Solution:

Installment Re 1 Present value = Rs 4.4518

Installment = Rs 10,000 Present value = Rs 4.4518 x 10,000 = Rs 44,518

Determinants of the Value of Bonds

Bonds are fixed-income securities that represent a loan from an investor to a borrower, typically a corporation or government. When purchasing a bond, the investor lends money in exchange for periodic interest payments and the return of the bond’s face value at maturity. Bonds are used to finance various projects and operations, providing a predictable income stream for investors.

Valuation of Bonds

The method for valuation of bonds involves three steps as follows:

Step 1: Estimate the expected cash flows

Step 2: Determine the appropriate interest rate that should be used to discount the cash flows.

& Step 3: Calculate the present value of the expected cash flows (step-1) using appropriate interest rate (step- 2) i.e. discounting the expected cash flows

Step 1: Estimating cash flows

Cash flow is the cash that is estimated to be received in future from investment in a bond. There are only two types of cash flows that can be received from investment in bonds i.e. coupon payments and principal payment at maturity.

The usual cash flow cycle of the bond is coupon payments are received at regular intervals as per the bond agreement, and final coupon plus principle payment is received at the maturity. There are some instances when bonds don’t follow these regular patterns. Unusual patterns maybe a result of the different type of bond such as zero-coupon bonds, in which there are no coupon payments. Considering such factors, it is important for an analyst to estimate accurate cash flow for the purpose of bond valuation.

Step 2: Determine the appropriate interest rate to discount the cash flows

Once the cash flow for the bond is estimated, the next step is to determine the appropriate interest rate to discount cash flows. The minimum interest rate that an investor should require is the interest available in the marketplace for default-free cash flow. Default-free cash flows are cash flows from debt security which are completely safe and has zero chances default. Such securities are usually issued by the central bank of a country, for example, in the USA it is bonds by U.S. Treasury Security.

Consider a situation where an investor wants to invest in bonds. If he is considering to invest corporate bonds, he is expecting to earn higher return from these corporate bonds compared to rate of returns of U.S. Treasury Security bonds. This is because chances are that a corporate bond might default, whereas the U.S. Security Treasury bond is never going to default. As he is taking a higher risk by investing in corporate bonds, he expects a higher return.

One may use single interest rate or multiple interest rates for valuation.

Step 3: Discounting the expected cash flows

Now that we already have values of expected future cash flows and interest rate used to discount the cash flow, it is time to find the present value of cash flows. Present Value of a cash flow is the amount of money that must be invested today to generate a specific future value. The present value of a cash flow is more commonly known as discounted value.

The present value of a cash flow depends on two determinants:

  • When a cash flow will be received i.e. timing of a cash flow &;
  • The required interest rate, more widely known as Discount Rate (rate as per Step-2)

First, we calculate the present value of each expected cash flow. Then we add all the individual present values and the resultant sum is the value of the bond.

The formula to find the present value of one cash flow is:

Present value formula for Bond Valuation

Present Value n = Expected cash flow in the period n/ (1+i) n

Here,

i = rate of return/discount rate on bond
n = expected time to receive the cash flow

By this formula, we will get the present value of each individual cash flow t years from now. The next step is to add all individual cash flows.

Bond Value = Present Value 1 + Present Value 2 + ……. + Present Value n

Introduction, Meaning, Definition, Importance and Objective of Research

Research is a systematic and organized process of collecting, analyzing, and interpreting information to increase understanding of a topic or issue. It aims to discover new facts, verify existing knowledge, or solve specific problems through careful investigation. Research can be theoretical or applied, and it involves forming hypotheses, gathering data, and drawing conclusions. It is essential in academic, scientific, and business fields to make informed decisions and improve practices. A well-conducted research study follows a structured methodology to ensure reliability and validity. Overall, research is a tool for expanding knowledge and contributing to the development of society and industries.

Definition of Research:

  1. Clifford Woody: Research is a careful inquiry or examination to discover new facts or verify old ones.

  2. Creswell: Research is a process of steps used to collect and analyze information to increase our understanding of a topic.

  3. Redman and Mory: Research is a systematized effort to gain new knowledge.

  4. Kerlinger: Research is a systematic, controlled, empirical, and critical investigation of hypothetical propositions.

  5. Lundberg: Research is a systematic activity directed towards the discovery and development of an organized body of knowledge.

Importance of Research:

  • Expansion of Knowledge

Research plays a vital role in expanding human knowledge. It helps us understand concepts, theories, and facts in a deeper and more meaningful way. Through systematic investigation, research uncovers hidden truths and broadens the scope of what is already known. This continuous process of discovery is essential in education, science, and innovation. Without research, the development of new ideas, improvements in technology, and advancements in various fields would come to a standstill.

  • Problem Solving

One of the main purposes of research is to find solutions to problems. In both academic and practical settings, research helps identify the root causes of issues and suggests possible remedies. Whether it’s a social, economic, scientific, or business problem, research provides the tools and frameworks to analyze the situation effectively. It allows decision-makers to make evidence-based choices and implement strategies that are backed by data and analysis, leading to more successful outcomes.

  • Informed Decision Making

Research enables individuals, organizations, and governments to make informed decisions. By analyzing data and studying trends, research provides a factual basis for choosing between alternatives. In business, it helps managers decide on product development, marketing strategies, and investment plans. In public policy, it helps lawmakers craft laws that address real needs. This reduces the risk of failure and ensures that decisions are effective, efficient, and aligned with actual conditions and demands.

  • Economic Development

Research is essential for economic growth and development. It leads to the creation of new products, services, and technologies, which drive industry and generate employment. By improving productivity, reducing costs, and increasing competitiveness, research directly contributes to the success of businesses and national economies. Additionally, research in areas like agriculture, health, and education ensures sustainable development by solving real-world problems and improving the quality of life for individuals and communities.

  • Improvement in Education

Research strengthens the education system by improving teaching methods, learning outcomes, and academic content. It helps educators understand student needs, evaluate curricula, and adopt innovative practices. Research also enables students and teachers to stay updated with the latest knowledge in their field, promoting lifelong learning. Educational research contributes to the development of better textbooks, e-learning tools, and inclusive teaching strategies that cater to diverse learning styles and backgrounds.

  • Policy Formulation

Government and institutional policies must be based on reliable data and analysis, which research provides. Whether in health, education, environment, or public safety, research ensures that policies are relevant, effective, and future-ready. It helps policymakers assess the potential impact of laws and regulations, avoiding guesswork and promoting social welfare. Evidence-based policies are more likely to gain public support and achieve their goals, ultimately benefiting the economy and society as a whole.

  • Innovation and Technology Advancement

Innovation thrives on research. From developing new medical treatments to designing smarter devices, research is the foundation of technological progress. Scientists and engineers rely on research to explore possibilities, test ideas, and turn concepts into real-world applications. Research also encourages creativity and collaboration across disciplines, pushing the boundaries of what’s possible. As technology rapidly evolves, research ensures that innovation continues to meet the needs of people and adapt to changing environments.

  • Social and Cultural Understanding

Research deepens our understanding of social and cultural dynamics. It helps explore human behavior, beliefs, traditions, and societal changes. Through research in fields like sociology, anthropology, and psychology, we gain insights into communities and cultures, fostering tolerance and mutual respect. This understanding is crucial in a globalized world where collaboration and coexistence are key. It also helps in addressing social issues like poverty, gender inequality, and discrimination with informed, data-backed strategies.

Objective of Research:

  • To Gain Familiarity with a Phenomenon

One major objective of research is to explore and understand a phenomenon or concept more clearly. This is often done through exploratory research, especially when little prior knowledge exists. It helps researchers gain insights into new topics, identify trends, and lay the groundwork for future studies. By becoming familiar with unfamiliar issues, researchers can form better hypotheses and research questions. This foundational understanding is critical for developing more in-depth research and creating meaningful contributions to academic and professional fields.

  • To Describe a Phenomenon Accurately

Descriptive research aims to systematically and precisely describe the characteristics of a subject, event, or population. Whether it’s human behavior, market trends, or institutional processes, this type of research collects detailed information to create an accurate picture. The objective is not to determine cause-and-effect but to define “what is” in a clear and factual manner. Such descriptions help researchers, practitioners, and policymakers understand the current state of affairs and serve as a reference point for comparing future changes.

  • To Establish Cause-and-Effect Relationships

Causal or explanatory research seeks to identify and analyze relationships between variables, often using experiments or observational studies. The objective is to determine how and why certain phenomena occur. For instance, a business might study the impact of advertising on sales. Establishing cause-and-effect allows researchers to predict outcomes and design effective interventions. This type of research is essential in fields like science, economics, and medicine, where understanding the effects of one factor on another can lead to critical discoveries and solutions.

  • To Test Hypotheses

Another key objective of research is hypothesis testing, where assumptions or predictions made before a study are examined for accuracy. Researchers design experiments or surveys to gather data that supports or refutes their hypotheses. The goal is to provide empirical evidence for or against theoretical statements. This process sharpens theories, confirms findings, and promotes scientific accuracy. Testing hypotheses is particularly important in quantitative research, as it relies on statistical techniques to validate conclusions and ensure objectivity.

  • To Develop New Theories and Concepts

Research often leads to the creation or refinement of theories and models that explain how the world works. The objective here is to go beyond existing knowledge and offer new perspectives or conceptual frameworks. Through in-depth analysis, researchers can challenge outdated views and propose innovative explanations. These new theories guide future research, inform policy, and influence practice across disciplines. In academic fields, theoretical research forms the basis for scholarly progress and intellectual advancement.

  • To Find Solutions to Practical Problems

Applied research is conducted with the specific objective of solving real-world problems. Whether it’s improving product design, enhancing public health, or increasing workplace efficiency, the goal is to apply scientific methods to practical challenges. This kind of research is widely used in industries, education, and government. It not only addresses current issues but also anticipates future needs. By developing effective strategies and solutions, applied research makes a direct contribution to societal well-being and economic development.

  • To Predict Future Trends

Research aims to forecast what may happen in the future based on current and past data. Predictive research uses statistical tools and modeling techniques to identify patterns and trends that inform future outcomes. For example, businesses use market research to predict consumer behavior, and climate scientists use data to forecast environmental changes. These predictions guide planning and strategic decisions. Accurate forecasting is essential for minimizing risk, improving preparedness, and making proactive decisions in dynamic environments.

  • To Enhance Understanding and Clarify Doubts

Research helps deepen our understanding of complex topics and clarifies uncertainties that may exist in previous studies or beliefs. By investigating issues from multiple angles, using various methods, and verifying results, research ensures greater clarity and accuracy. This objective is crucial in academia and science, where incomplete or conflicting information often leads to confusion. Ongoing research contributes to refinement, resolution of debates, and filling knowledge gaps, ensuring a more complete and reliable understanding of any subject.

Present Value, Functions

Present Value (PV) concept refers to the current worth of a future sum of money or stream of cash flows, discounted at a specific interest rate. It reflects the principle that a dollar today is worth more than a dollar in the future due to its potential earning capacity.

PV = FV / (1+r)^n

where

FV is the future value,

r is the discount rate,

n is the number of periods until payment.

This concept is essential in finance for assessing investment opportunities and financial planning.

Functions of Present Value:

  • Valuation of Cash Flows:

PV allows investors and analysts to evaluate the worth of future cash flows generated by an investment. By discounting future cash flows to their present value, stakeholders can determine if the investment is financially viable compared to its cost.

  • Investment Decision Making:

In capital budgeting, PV is crucial for assessing whether to proceed with projects or investments. By comparing the present value of expected cash inflows to the initial investment (cost), decision-makers can prioritize projects that offer the highest returns relative to their costs.

  • Comparison of Investment Alternatives:

PV provides a standardized method for comparing different investment opportunities. By converting future cash flows into their present values, investors can effectively evaluate and contrast various investments, regardless of their cash flow patterns or timing.

  • Financial Planning:

Individuals and businesses use PV for financial planning and retirement savings. By calculating the present value of future financial goals (like retirement funds), individuals can determine how much they need to save and invest today to achieve those goals.

  • Debt Valuation:

PV is essential for valuing bonds and other debt instruments. The present value of future interest payments and the principal repayment is calculated to determine the fair market value of the bond. This valuation helps investors make informed decisions about purchasing or selling bonds.

  • Risk Assessment:

Present Value helps in assessing the risk associated with investments. Higher discount rates, which account for risk and uncertainty, lower the present value of future cash flows. This relationship allows investors to gauge the risk-return trade-off of different investments effectively.

Future Value, Functions

Future Value (FV) is the value of a current asset at a future date based on an assumed rate of growth. The future value (FV) is important to investors and financial planners as they use it to estimate how much an investment made today will be worth in the future. Knowing the future value enables investors to make sound investment decisions based on their anticipated needs.

FV calculation allows investors to predict, with varying degrees of accuracy, the amount of profit that can be generated by different investments. The amount of growth generated by holding a given amount in cash will likely be different than if that same amount were invested in stocks; so, the FV equation is used to compare multiple options.

Determining the FV of an asset can become complicated, depending on the type of asset. Also, the FV calculation is based on the assumption of a stable growth rate. If money is placed in a savings account with a guaranteed interest rate, then the FV is easy to determine accurately. However, investments in the stock market or other securities with a more volatile rate of return can present greater difficulty.

Future Value (FV) formula assumes a constant rate of growth and a single upfront payment left untouched for the duration of the investment. The FV calculation can be done one of two ways depending on the type of interest being earned. If an investment earns simple interest, then the Future Value (FV) formula is:

  • Future value (FV) is the value of a current asset at some point in the future based on an assumed growth rate.
  • Investors are able to reasonably assume an investment’s profit using the future value (FV) calculation.
  • Determining the future value (FV) of a market investment can be challenging because of the market’s volatility.
  • There are two ways of calculating the future value (FV) of an asset: FV using simple interest and FV using compound interest.

Functions of Future Value:

  • Investment Growth Measurement:

FV is used to calculate how much an investment will grow over time. By applying a specified interest rate, investors can estimate the future worth of their initial investments or savings, helping them understand the potential returns.

  • Retirement Planning:

FV plays a critical role in retirement planning. Individuals can determine how much they need to save today to achieve a desired retirement income. By calculating the future value of regular contributions to retirement accounts, they can set realistic savings goals.

  • Loan Repayment Calculations:

For borrowers, FV is crucial in understanding the total amount owed on loans over time. It helps them visualize the long-term cost of borrowing, including interest payments, aiding in budgeting and financial decision-making.

  • Comparison of Investment Opportunities:

FV provides a standardized way to compare different investment options. By calculating the future value of various investment opportunities, investors can evaluate which options offer the highest potential returns over a specified period.

  • Education Funding:

Parents can use FV to plan for their children’s education expenses. By estimating future tuition costs and calculating how much they need to save now, parents can ensure they accumulate sufficient funds by the time their children enter college.

  • Inflation Adjustment:

FV helps investors account for inflation when planning for future expenses. By incorporating an expected inflation rate into future value calculations, individuals and businesses can better estimate the amount needed to maintain purchasing power over time.

Methods of Primary Data Collection: Observation, Interview, Questionnaire, and Survey

Primary Data is information collected firsthand by a researcher for a specific research purpose. It is original, fresh, and tailored directly to the research question or objective. Methods such as surveys, interviews, experiments, and observations are commonly used to gather primary data. Since it is collected directly from the source, primary data is highly relevant, specific, and accurate. However, it often requires more time, effort, and resources compared to using existing information. It is essential for studies needing updated or detailed insights.

Methods of Primary Data Collection:

  • Observation

Observation involves systematically watching and recording behaviors, events, or phenomena as they occur naturally or in a controlled setting. It allows researchers to gather real-time, unbiased data without influencing the subject’s behavior. Observations can be structured (following a predefined checklist) or unstructured (open-ended). It is especially useful when participants are unwilling or unable to provide accurate verbal responses. Researchers may act as participants (participant observation) or as non-intrusive observers. Observation is widely used in fields like anthropology, psychology, and marketing to understand behaviors, workflows, or consumer interactions. It provides deep insights but may sometimes lack the ability to explain the reasons behind certain actions, requiring combination with other methods like interviews for richer analysis.

  • Interview

An interview is a direct, face-to-face, telephonic, or video-based conversation between the researcher and the participant aimed at gathering detailed information. Interviews can be structured (fixed questions), semi-structured (guided by a framework but flexible), or unstructured (open conversation). This method allows for in-depth exploration of opinions, emotions, experiences, and motivations. Interviews can be personal or group-based, depending on research needs. They are commonly used in qualitative research to gain comprehensive understanding and context behind responses. Although interviews provide rich, detailed data, they can be time-consuming and may introduce biases if not conducted carefully. Proper interviewer skills are essential for encouraging honest and open communication from participants.

  • Questionnaire

Questionnaire is a set of written or digital questions designed to collect information from respondents. It can include closed-ended questions (like multiple-choice) or open-ended questions (where respondents write answers in their own words). Questionnaires are often used for surveys and research studies where standardized information is needed from a large audience. They are cost-effective, easy to distribute, and efficient in data collection. Responses are easy to quantify for statistical analysis. However, the design of the questionnaire is crucial — poorly framed questions can lead to misunderstandings and unreliable data. Questionnaires are widely used in education, social science, market research, and customer satisfaction studies.

  • Survey

Survey is a research method involving the systematic collection of information from a sample of individuals, usually through questionnaires or interviews. Surveys can be conducted in-person, via phone, online, or by mail. They are useful for gathering quantitative as well as qualitative data about behaviors, attitudes, preferences, or demographics. Surveys are popular because they can cover large populations at relatively low cost and produce statistically significant results if designed properly. However, their effectiveness depends on clear question framing, respondent honesty, and sampling methods. Surveys are widely used in fields like business, healthcare, political science, and social research for decision-making and trend analysis.

Annuities, Types, Valuation, Uses

An annuity is a financial product that provides certain cash flows at equal time intervals. Annuities are created by financial institutions, primarily life insurance companies, to provide regular income to a client.

An annuity is a reasonable alternative to some other investments as a source of income since it provides guaranteed income to an individual. However, annuities are less liquid than investments in securities because the initially deposited lump sum cannot be withdrawn without penalties.

Upon the issuance of an annuity, an individual pays a lump sum to the issuer of the annuity (financial institution). Then, the issuer holds the amount for a certain period (called an accumulation period). After the accumulation period, the issuer must make fixed payments to the individual according to predetermined time intervals.

Annuities are primarily bought by individuals who want to receive stable retirement income.

Types of Annuities

There are several types of annuities that are classified according to frequency and types of payments. For example, the cash flows of annuities can be paid at different time intervals. The payments can be made weekly, biweekly, or monthly. The primary types of annuities are:

  1. Fixed annuities

Annuities that provide fixed payments. The payments are guaranteed, but the rate of return is usually minimal.

  1. Variable annuities

Annuities that allow an individual to choose a selection of investments that will pay an income based on the performance of the selected investments. Variable annuities do not guarantee the amount of income, but the rate of return is generally higher relative to fixed annuities.

  1. Life annuities

Life annuities provide fixed payments to their holders until his/her death.

  1. Perpetuity

An annuity that provides perpetual cash flows with no end date. Examples of financial instruments that grant the perpetual cash flows to its holders are extremely rare.

The most notable example is a UK Government bond called consol. The first consols were issued in the middle of the 18th century.

Valuation of Annuities

Annuities are valued by discounting the future cash flows of the annuities and finding the present value of the cash flows. The general formula for annuity valuation is:

Uses of Annuities:

  • Retirement Income:

One of the primary uses of annuities is to provide a steady stream of income during retirement. Individuals can convert their retirement savings into an annuity, ensuring they receive regular payments for a specified period or for the rest of their lives. This helps manage longevity risk and provides financial security in retirement.

  • Wealth Management:

Annuities can be used as a wealth management tool, allowing investors to grow their assets on a tax-deferred basis. The accumulation phase of certain annuities lets individuals invest their funds in various financial instruments, potentially increasing their wealth over time before withdrawing it later.

  • Educational Funding:

Parents can use annuities to save for their children’s education. By purchasing an annuity that provides payments when their children reach college age, parents can ensure they have the funds needed to cover tuition and other educational expenses.

  • Structured Settlements:

Annuities are often used in structured settlements resulting from legal claims or personal injury cases. Instead of receiving a lump sum, individuals can opt for an annuity that pays out over time, providing financial stability and reducing the risk of mismanaging a large sum of money.

  • Estate Planning:

Annuities can play a role in estate planning by providing a way to transfer wealth to heirs. Certain types of annuities allow individuals to designate beneficiaries, ensuring that funds are passed on according to their wishes while potentially avoiding probate.

Basic Concepts, Simple and Compound Interest

Interest rates are very powerful and intriguing mathematical concepts. Our banking and finance sector revolves around these interest rates. One minor change in these rates could have tremendous and astonishing impacts over the economy.

Interest is the amount charged by the lender from the borrower on the principal loan sum. It is basically the cost of renting money. And, the rate at which interest is charged on the principal sum is known as the interest rate.

These concepts are categorized into type of interests

  • Simple Interest
  • Compound Interest

Simple Interest

Simple Interest because as the name suggests it is simple and comparatively easy to comprehend.

Simple interest is that type of interest which once credited does not earn interest on itself. It remains fixed over time.

The formula to calculate Simple Interest is

SI = {(P x R x T)/ 100}   

Where,

P = Principal Sum (the original loan/ deposited amount)

R = rate of interest (at which the loan is charged)

T = time period (the duration for which money is borrowed/ deposited)

So, if P amount is borrowed at the rate of interest R for T years then the amount to be repaid to the lender will be

A = P + SI

Compound Interest:

This the most usual type of interest that is used in the banking system and economics. In this kind of interest along with one principal further earns interest on it after the completion of 1-time period. Suppose an amount P is deposited in an account or lent to the borrower that pays compound interest at the rate of R% p.a. Then after n years the deposit or loan will accumulate to:

P ( 1 + R/100)n

Compound Interest when Compounded Half Yearly

Example 2:

Find the compound interest on Rs 8000 for 3/2 years at 10% per annum, interest is payable half-yearly.

Solution: Rate of interest = 10% per annum = 5% per half –year. Time = 3/2 years = 3 half-years

Original principal = Rs 8000.

Amount at the end of the first half-year = Rs 8000 +Rs 400 = Rs 8400

Principal for the second half-year = Rs 8400

Amount at the end of the second half year = Rs 8400 +Rs 420 = Rs 8820

Amount at the end of third half year = Rs 8820 + Rs 441= Rs 9261.

Therefore, compound interest= Rs 9261- Rs 8000 = Rs 1261.

Therefore,

Effective Rate of interest

The Effective Annual Rate (EAR) is the interest rate that is adjusted for compounding over a given period. Simply put, the effective annual interest rate is the rate of interest that an investor can earn (or pay) in a year after taking into consideration compounding.

The Effective Annual Interest Rate is also known as the effective interest rate, effective rate, or the annual equivalent rate. Compare it to the Annual Percentage Rate (APR) which is based on simple interest.

The EAR formula for Effective Annual Interest Rate:

Where:

i = stated annual interest rate

n = number of compounding periods

Importance of Effective Annual Rate

The Effective Annual Interest Rate is an important tool that allows the evaluation of the true return on an investment or true interest rate on a loan.

The stated annual interest rate and the effective interest rate can be significantly different, due to compounding. The effective interest rate is important in figuring out the best loan or determining which investment offers the highest rate of return.

In the case of compounding, the EAR is always higher than the stated annual interest rate.

Relationship between Effective and Nominal rate of interest

Whether effective and nominal rates can ever be the same depends on whether interest calculations involve simple or compound interest. While in a simple interest calculation effective and nominal rates can be the same, effective and nominal rates will never be the same in a compound interest calculation. Although short-term notes generally use simple interest, the majority of interest is calculated using compound interest. To a small-business owner, this means that except when taking out a short-term note, such as loan to fund working capital, effective and nominal rates can be the same for most every other credit purchase or cash investment.

Nominal Vs. Effective Rate

Nominal rates are quoted, published or stated rates for loans, credit cards, savings accounts or other short-term investments. Effective rates are what borrowers or investors actually pay or receive, depending on whether or how frequently interest is compounded. When interest is calculated and added only once, such as in a simple interest calculation, the nominal rate and effective interest rates are equal. With compounding, a calculation in which interest is charged on the loan or investment principal plus any accrued interest up to the point at which interest is being calculated, however, the difference between nominal and effective increases exponentially according to the number of compounding periods. Compounding can take place daily, monthly, quarterly or semi-annually, depending on the account and financial institution regulations.

Simple Interest

The formula for calculating simple interest is “P x I x T” or principle multiplied by the interest rate per period multiplied by the time the money is being borrowed or invested. This formula illustrates that because interest is always being calculated on the principal amount, regardless of the time period involved, the nominal and effective rates will always be equal . If a small-business owner takes out a $5,000 simple interest loan at a nominal rate of 10 percent, $500 of interest will be added to the loan will each year, regardless of the number of years. To illustrate, just as $5,000 x 0.10 x 1 equals $500, $5,000 x 0.10 x 5 equals $2,500 or $500 per year. The nominal and effective rates of 10 percent in both calculations are equal.

Compound Interest

The formula for calculating compound interest shows how nominal and effective rates will never be equal. The formula is “P x (1 + i)n – P” where “n” is the number of compounding periods. In a compound interest calculation, the only time interest is charged or added to the principal is in the first compounding period. The base for each subsequent compounding period is the principal plus any accrued interest. If a small-business owner takes out a one-year $5,000 compound-interest loan at a nominal interest rate of 10 percent, where interest is compounded monthly, total interest that accumulates over the year is $5,000 x (1 + .10)5 – $5,000 or $550. The nominal rate of 10 percent and the effective rate of 11 percent clearly aren’t the same.

Effect On Small Business Owners

It’s crucial that whether the intent is to borrow or invest, small-business owners pay close attention to effective and nominal rates as well as the number of compounding periods. Compounding interest not only creates distance between nominal and effective rates but also works in favor of lenders. For example, a bank, credit card company or auto dealership might advertise a low nominal rate, but compound interest monthly. This in effect significantly increases the total amount owed. This is one reason why lenders advertise or quote nominal rather than effective rates in lending situations.

error: Content is protected !!