Meaning and Principles of Technology transfer

Technology transfer (TT), also called transfer of technology (TOT), is the process of transferring (disseminating) technology from the person or organization that owns or holds it to another person or organization, in an attempt to transform inventions and scientific outcomes into new products and services that benefit society. Technology transfer is closely related to (and may arguably be considered a subset of) knowledge transfer.

A comprehensive definition of technology transfer today includes the notion of collaborative process as it became clear that global challenges could be resolved only through the development of global solutions. Knowledge and technology transfer plays a crucial role in connecting innovation stakeholders and moving inventions from creators to public and private users.

Intellectual property (IP) is an important instrument of technology transfer, as it establishes an environment conducive to sharing research results and technologies. Analysis in 2003 showed that the context, or environment, and motives of each organization involved will influence the method of technology transfer employed. The motives behind the technology transfer were not necessarily homogenous across organization levels, especially when commercial and government interests are combined.  The protection of IP rights enables all parties, including universities and research institutions to ensure ownership of the scientific outcomes of their intellectual activity, and to control the use of IP in accordance with their mission and core values. IP protection gives academic institutions capacity to market their inventions, attract funding, seek industrial partners and assure dissemination of new technologies through means such as licensing or creation of start-ups for the benefit of society.

Technology Transfer in practice

Technology transfers may occur between universities, businesses (of any size, ranging from small, medium, to large), governments, across geopolitical borders, both formally and informally, and both openly and secretly. Often it occurs by concerted effort to share skills, knowledge, technologies, manufacturing methods, samples, and facilities among the participants.

Technology Transfer process involves many activities, which can be represented in many ways, in reality, technology transfer is a fluid and dynamic process that rarely follows a linear course. Typical steps include:

  • Knowledge creation
  • Disclosure
  • Assessment and evaluation
  • IP protection
  • Fundraising and technology development
  • Marketing
  • Commercialization
  • Product development

Technology transfer aims to ensure that scientific and technological developments are accessible to a wider range of users who can then further develop and exploit the technology into new products, processes, applications, materials, or services. It is closely related to (and may arguably be considered a subset of) knowledge transfer. Horizontal transfer is the movement of technologies from one area to another.

Importance of Technology Transfer

Technology transfer is an important part of the technological innovation process, promoting scientific and technological research and the associated skills and procedures to wider society and the marketplace.

Tech transfer allows research to develop from the discovery of novel technologies along the value chain to disclosure, evaluation and the protection of these breakthroughs. From here, marketing, licensing and further development of products allow the research to become an impactful product, process or service for society. In addition, the financial returns afforded by a successful product can be reinvested into further research to begin the cycle again.

As a result, technology transfer creates revenues for universities to use for faculty recruitment, funding and more research. Companies are able to tap into the advances brought about by this academic research without having to spend on internal R&D to create new products to drive business forward.

The advantages of successful technology transfer can be felt through national and regional economies via growth through innovation, new ventures and stronger industry to boost employment.

Spin-outs

Spin-outs are used where the host organization does not have the necessary will, resources, or skills to develop new technology. Often these approaches are associated with raising of venture capital (VC) as a means of funding the development process, a practice common in the United States and the European Union. Research spin-off companies are a popular vehicle of commercialization in Canada, where the rate of licensing of Canadian university research remains far below that of the US. Local venture capital organizations such as the Mid-Atlantic Venture Association (MAVA) also sponsor conferences at which investors assess the potential for commercialization of technology.

Technology brokers are people who discovered how to bridge the emergent worlds and apply scientific concepts or processes to new situations or circumstances. A related term, used almost synonymously, especially in Europe, is “technology valorisation”. While conceptually the practice has been utilized for many years (in ancient times, Archimedes was notable for applying science to practical problems), the present-day volume of research, combined with high-profile failures at Xerox PARC and elsewhere, has led to a focus on the process itself.

Whereas technology transfer can involve the dissemination of highly complex technology from capital-intensive origins to low-capital recipients (and can involve aspects of dependency and fragility of systems), it also can involve appropriate technology, not necessarily high-tech or expensive, that is better disseminated, yielding robustness and independence of systems.

Informal promotion

Technology transfer is also promoted through informal means, such as at conferences organized by various groups, including the Ewing Marion Kauffman Foundation and the Association of University Technology Managers (AUTM), and at “challenge” competitions by organizations such as the Center for Advancing Innovation in Maryland. AUTM represents over 3,100 technology transfer professionals, and more than 800 universities, research centres, hospitals, businesses and government organizations.

The most frequently used informal means of technology transfer are through education, studies, professional exchange of opinions, movement of people, seminars, workshops.

There are numerous professional associations and TTO Networks enhancing different forms of collaboration among technology managers in order to facilitate this “informal” transfer of best practices and experiences.

In addition to AUTM, other regional and international associations include the Association of European Science and Technology Transfer Professionals (ASTP), the Alliance of Technology Transfer Professionals (ATTP), Licensing Executives Society (LES), Praxis Auril and others. There are also national Technology transfer associations and networks, such as the National Association of Technology Transfer Offices in Mexico (Red OTT Mexico), the Brazilian Forum of Innovation and Technology Transfer Managers (FORTEC), the Alliance of TechTransfer Professionals of the Philippines (AToP), the South African Research and Innovation Management Association (SARIMA), and other associations.

They promote cooperation in technology transfer and the exchange of best practices and experiences among professionals, as today international technology transfer is considered one of the most effective ways to bring people together to find solutions to global problems such as COVID-19, climate change or cyber-attacks.

IP policies

Universities and research institutions seeking to partner with industry or other organizations can adopt an institutional intellectual property policy for effective intellectual property management and technology transfer. Such policies provide structure, predictability, and a n environment, in which commercialization partners (industrial sponsors, consultants, non-profit organizations, SMEs, governments) and research stakeholders (researchers, technicians, students, visiting researchers, etc.) can access and share knowledge, technology and IP. National IP strategies are measures taken by a government to realize its IP policy objectives.

Leave a Reply

error: Content is protected !!